Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 44(11): 6319-6327, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973114

ABSTRACT

In this study, four groups of lead(Pb) and cadmium(Cd) combined treatments with different concentration ratios were set up in Hailun black soil, Xianning brown-red soil, and Changwu Heilu soil, and wheat(Zhengmai 9023) was planted for a five-month pot experiment to analyze the Pb-Cd interaction behavior on heavy metal bioaccumulation in wheat under three soil-wheat systems. The low pH brown-red soil had the highest water-soluble Cd and Pb contents with significant Pb-Cd interactions in the soil, whereas the black soil with high organic matter and Heilu soil with high calcium carbonate content exhibited lower Cd and Pb activities. Among the three soils, wheat height and dry weight showed the poorest growth performance in the Heilu soil, but the wheat height increased by 2.68-8.49 cm compared with that in the control under the Pb-Cd combined treatment, whereas Pb-Cd interaction had the least effect on wheat height and dry weight in black soil and inhibited the growth of wheat in the brown-red soil. In the transport process of Cd or Pb in wheat, Pb-Cd interaction showed quite different effects in the three soil-wheat systems. Under the 125 mg·kg-1 and 250 mg·kg-1 Pb treatments, the Pb content in wheat grain planted in brown-red soil significantly increased by 73.2% and 19.1% with the addition of Cd, respectively, and therefore there was a synergistic effect between Pb and Cd. Under the 0.3 mg·kg-1 and 0.6 mg·kg-1 Cd treatments, the Cd content in wheat grains planted in black soil decreased by 51% and 33% with the addition of Pb, respectively; therefore, there was an antagonist effect between Pb and Cd. In the Heilu soil, a synergistic effect of Cd on Pb transport in wheat leaves was only observed under high Pb treatment. Therefore, pH and organic matter content were the key factors that determined the interaction behavior of Pb and Cd. The wheat food security risk of Pb and Cd combined pollution was higher than that of single metal pollution in acidic brown-red soil and lower in high organic matter black soil, whereas the interaction of Pb and Cd had little impact on the wheat food security risk of alkaline Heilu soil.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Triticum , Lead , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...